In vivo waveguide elastography of white matter tracts in the human brain.
نویسندگان
چکیده
White matter is composed primarily of myelinated axons which form fibrous, organized structures and can act as waveguides for the anisotropic propagation of sound. The evaluation of their elastic properties requires both knowledge of the orientation of these waveguides in space, as well as knowledge of the waves propagating along and through them. Here, we present waveguide elastography for the evaluation of the elastic properties of white matter tracts in the human brain, in vivo, using a fusion of diffusion tensor imaging, magnetic resonance elastography, spatial-spectral filtering, a Helmholtz decomposition, and anisotropic inversions, and apply this method to evaluate the material parameters of the corticospinal tracts of five healthy human volunteers. We begin with an Orthotropic inversion model and demonstrate that redundancies in the solution for the nine elastic coefficients indicate that the corticospinal tracts can be approximated by a Hexagonal model (transverse isotropy) comprised of five elastic coefficients representative of a medium with fibers aligned parallel to a central axis, and provides longitudinal and transverse wave velocities on the order of 5.7 m/s and 2.1 m/s, respectively. This method is intended as a new modality to assess white matter structure and health by means of the evaluation of the anisotropic elasticity tensor of nerve fibers.
منابع مشابه
Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملDT-MRI Tractography and its Application in Cognitive Neuroscience
Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...
متن کاملIn vivo waveguide elastography: effects of neurodegeneration in patients with amyotrophic lateral sclerosis.
PURPOSE Waveguide elastography (WGE) combines magnetic resonance elastography (MRE), diffusion tensor imaging (DTI), and anisotropic inversions for a determination of the elastic properties of white matter. Previously, the method evaluated the anisotropic elastic properties of the corticospinal tracts (CSTs) of healthy volunteers. Here, the sensitivity of WGE is tested for the detection of path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 68 5 شماره
صفحات -
تاریخ انتشار 2012